Minggu, 07 Januari 2024

Modul 3




KONTROL TANAMAN TOMAT GREENHOUSE

1. Pendahuluan
[Kembali]


Pendahuluan:

Pertanian modern semakin mengadopsi teknologi canggih untuk meningkatkan produktivitas dan efisiensi dalam proses budidaya tanaman. Salah satu inovasi yang menarik adalah penggunaan sistem kontrol otomatis pada greenhouses atau rumah kaca untuk tanaman tomat. Sistem ini memanfaatkan teknologi mikrokontroler, seperti Arduino, dan sensor-sensor khusus seperti LM35, sensor kelembaban tanah (soil moisture), dan sensor PIR (Passive Infrared) untuk menciptakan lingkungan yang optimal bagi pertumbuhan dan perkembangan tanaman.

Greenhouse atau rumah kaca memberikan kontrol yang lebih baik terhadap kondisi lingkungan dibandingkan dengan pertanian konvensional di lapangan terbuka. Namun, untuk memaksimalkan hasil pertanian di dalam greenhouse, penting untuk memantau dan mengontrol sejumlah faktor lingkungan, seperti suhu udara, kelembaban tanah, dan kehadiran manusia.

Pada penelitian ini, kami akan membahas implementasi aplikasi kontrol tanaman tomat di dalam greenhouse menggunakan platform Arduino sebagai otak sistem. Sensor suhu LM35 digunakan untuk memantau suhu udara di sekitar tanaman, sensor soil moisture berfungsi untuk memonitor tingkat kelembaban tanah, dan sensor PIR akan mendeteksi keberadaan manusia di dalam greenhouse. Integrasi sensor-sensor ini akan memungkinkan sistem untuk merespons secara otomatis terhadap perubahan kondisi lingkungan, menjaga suhu yang optimal, memberikan air sesuai kebutuhan, dan memberikan perlindungan terhadap hama atau penyakit tanaman.

Dengan menggunakan teknologi ini, diharapkan dapat meningkatkan efisiensi pengelolaan greenhouse, mengurangi penggunaan sumber daya, dan pada akhirnya, meningkatkan hasil pertanian tanaman tomat. Selain itu, sistem kontrol otomatis ini juga dapat memberikan kenyamanan dan kemudahan bagi petani dalam memantau dan mengelola tanaman mereka, bahkan tanpa harus berada secara fisik di lokasi. Dengan demikian, penelitian ini memberikan kontribusi pada pengembangan pertanian pintar yang berkelanjutan dan efisien.

2. Tujuan [Kembali]
  1. Untuk menyelesaikan tugas mikrokontroler yang diberikan oleh Bapak Dr. Darwison, M.T.
  2. Mengetahui komponen yang digunakan dalam membuat rangkaian pada modul 3 
  3. Memahami dasar input dan output mikrokontroler.
3. Alat dan Bahan [Kembali]

Alat

a. Power Supply




b. Voltmeter

c. Baterai


Spesifikasi dan Pinout Baterai

  • Input voltage: ac 100~240v / dc 10~30v
  • Output voltage: dc 1~35v
  • Max. Input current: dc 14a
  • Charging current: 0.1~10a
  • Discharging current: 0.1~1.0a
  • Balance current: 1.5a/cell max
  • Max. Discharging power: 15w
  • Max. Charging power: ac 100w / dc 250w
  • Jenis batre yg didukung: life, lilon, lipo 1~6s, lihv 1-6s, pb 1-12s, nimh, cd 1-16s
  • Ukuran: 126x115x49mm
  • Berat: 460gr

Bahan

a. Resistor


Spesifikasi :





b. Arduino Uno R3


Spesifikasi:

c. Jumper


d. Sensor PIR


Spesifikasi :
ItemValue
Input VoltageDC 4.5V ~ 20V
Static Current<50uA
Output Signal0V / 3V (Output high when motion detected)
Sensing Range7 meters (120 degree cone)
Delay time8s ~ 200s (adjustable)
Operating Temperature-15℃ ~ +70℃
Dimensions24mm*32mm*25mm(Height with lens)
Weight6.6g





e. Relay 



Spesifikasi :
  • Trigger Voltage (Voltage across coil) : 12V DC
  • Trigger Current (Nominal current) : 70mA
  • Maximum AC load current: 10A @ 250/125V AC
  • Maximum DC load current: 10A @ 30/28V DC
  • Compact 5-pin configuration with plastic moulding
  • Operating time: 10msec Release time: 5msec
  • Maximum switching: 300 operating/minute (mechanically)


f. Motor DC

 DC Motor Specifications
  • Standard 130 Type DC motor
  • Operating Voltage: 4.5V to 9V
  • Recommended/Rated Voltage: 6V
  • Current at No load: 70mA (max)
  • No-load Speed: 9000 rpm
  • Loaded current: 250mA (approx)
  • Rated Load: 10g*cm
  • Motor Size: 27.5mm x 20mm x 15mm
  • Weight: 17 grams

g. Dioda




Spesifikasi :
  • Package Type: Available in DO-41 & SMD Packages
  • Diode Type: Silicon Rectifier General Usage Diode
  • Max Repetitive Reverse Voltage is: 1000 Volts
  • Average Fwd Current: 1000mA
  • Non-repetitive Max Fwd Current: 30A
  • Max Power Dissipation is: 3W
  • Max Storage & Operating temperature Should Be: -55 to +175 Centigrade

h. Lampu



i. LCD 20X4




j. Potensiometer


k. Induktor

l. Kapasitor


m. Soil Moisture Sensor

SPESIFIKASI

  • Working voltage: 3.3 ~ 5.5 VDC
  • Output voltage: 0 ~ 3.0 VDC
  • Interface: PH2.54-3P nSize: 98 x 23mm (LxW)

n. Sensor suhu (LM35)



Spesifikasi
• Short Circuit Protected Outputs 
• True Differential Input Stage 
• Single Supply Operation: 3.0 V to 32 V 
• Low Input Bias Currents 
• Internally Compensated 
• Common Mode Range Extends to Negative Supply 
• Single and Split Supply Operation 
• ESD Clamps on the Inputs Increase Ruggedness of the Device without Affecting Operation 
• NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and PPAP Capable 
• These Devices are Pb−Free, Halogen Free/BFR Free and are RoHS Compliant

4. Dasar Teori [Kembali]

a. Arduino Uno 


Arduino adalah pengendali mikro single-board yang bersifatopen-source, diturunkan dari Wiring platform, dirancang untuk memudahkan penggunaan elektronik dalam berbagai bidang. Hardware arduino memiliki prosesor Atmel AVR dan software arduino memiliki bahasa pemrograman C.Memori yang dimiliki oleh Arduino Uno sebagai berikut : Flash Memory sebesar 32KB, SRAM sebesar 2KB, dan EEPROM sebesar 1KB. Clock pada board Uno menggunakan XTAL dengan frekuensi 16 Mhz. Dari segi daya, Arduino Uno membutuhkan tegangan aktif kisaran 5 volt, sehingga Uno dapat diaktifkan melalui koneksi USB. Arduino Uno memiliki 28 kaki yang sering digunakan. Untuk Digital I/O terdiri dari 14 kaki, kaki 0 sampai kaki 13, dengan 6 kaki mampu memberikan output PWM (kaki 3,5,6,9,10,dan 11). Masing-masing dari 14 kaki digital di Uno beroperasi dengan tegangan maksimum 5 volt dan dapat memberikan atau menerima maksimum 40mA. Untuk Analog Input terdiri dari 6 kaki, yaitu kaki A0 sampai kaki A5. Kaki pin merupakan tempat input tegangan kepada Uno saat menggunakan sumber daya eksternal selain USB dan adaptor.

ATMega328 merupakan bagian mikrokontroler yang ada pada arduino R3 keluaran dari atmel yang mempunyai arsitektur RISC (Reduce Instruction Set Computer) yang mana setiap proses eksekusi data lebih cepat dari pada arsitektur CISC (Completed Instruction Set Computer). Mikrokontroler ini memiliki beberapa fitur antara lain:
1. Memiliki EEPROM (Electrically Erasable Programmable Read Only Memory) sebesar 1KB sebagai tempat penyimpanan data semi permanen karena EEPROM tetap dapat menyimpan data meskipun catu daya dimatikan.
2. Memiliki SRAM (Static Random Access Memory) sebesar 2KB.
3. Memiliki pin I/O digital sebanyak 14 pin 6 diantaranya PWM (Pulse Width Modulation) output.
4. 32 x 8-bit register serba guna.
5. Dengan clock 16 MHz kecepatan mencapai 16 MIPS.
6. 32 KB Flash memory dan pada arduino memiliki bootloader yang menggunakan 2 KB dari flash memori sebagai bootloader.
7. 130 macam instruksi yang hampir semuanya dieksekusi dalam satu siklus clock.


b. Resistor



Resistor merupakan salah satu komponen yang digunakan dalam sebuah sirkuit atau rangkaian elektronik. Resistor berfungsi sebagai resistansi/ hambatan yang mampu mengatur atau mengendalikan tegangan dan arus listrik rangkaian. Resistor mempunyai nilai resistansi (tahanan) tertentu yang dapat memproduksi tegangan listrik di antara kedua pin dimana nilai tegangan terhadap resistansi tersebut berbanding lurus dengan arus yang mengalir, berdasarkan persamaan hukum Ohm :




c. Power Supply
Vcc berfungsi untuk memberikan tegangan kepada input, dimana disini diberikan kepada switch.




d. Jumper
Kabel jumper adalah suatu istilah kabel yang ber-diameter kecil yang di dalam dunia elektronika digunakan untuk menghubungkan dua titik atau lebih dan dapat juga untuk menghubungkan 2 komponen elektronika. Kabel jumper jenis ini digunakan untuk koneksi male to male pada kedua ujung kabelnya.



e. Sensor PIR


PIR (Passive Infrared Receiver) merupakan sebuah sensor berbasiskan infrared. Akan tetapi, tidak seperti sensor infrared kebanyakan yang terdiri dari IR LED dan fototransistor. PIR tidak memancarkan apapun seperti IR LED. Sesuai dengan namanya ‘Passive’, sensor ini hanya merespon energi dari pancaran sinar inframerah pasif yang dimiliki oleh setiap benda yang terdeteksi olehnya. Benda yang bisa dideteksi oleh sensor ini biasanya adalah tubuh manusia

Diagram sebsor PIR:



PIR (Passive Infrared Receiver) merupakan sebuah sensor berbasiskan infrared. Akan tetapi, tidak seperti sensor infrared kebanyakan yang terdiri dari IR LED dan fototransistor. PIR tidak memancarkan apapun seperti IR LED. Sesuai dengan namanya ‘Passive’, sensor ini hanya merespon energi dari pancaran sinar inframerah pasif yang dimiliki oleh setiap benda yang terdeteksi olehnya. Benda yang bisa dideteksi oleh sensor ini biasanya adalah tubuh manusia.

Sensor PIR ini bekerja dengan menangkap energi panas yang dihasilkan dari pancaran sinar inframerah pasif yang dimiliki setiap benda dengan suhu benda diatas nol mutlak. Seperti tubuh manusia yang memiliki suhu tubuh kira-kira 32 derajat celcius, yang merupakan suhu panas yang khas yang terdapat pada lingkungan. Pancaran sinar inframerah inilah yang kemudian ditangkap oleh Pyroelectric sensor yang merupakan inti dari sensor PIR ini sehingga menyebabkan Pyroelectic sensor yang terdiri dari galium nitrida, caesium nitrat dan litium tantalate menghasilkan arus listrik. Mengapa bisa menghasilkan arus listrik? Karena pancaran sinar inframerah pasif ini membawa energi panas. Prosesnya hampir sama seperti arus listrik yangterbentuk ketika sinar matahari mengenai solar cell.

Grafik Respon Pir terhadap suhu


Grafik sensor pir terhadap jarak, kecepatan,arah objek







f. Relay



Relay adalah Saklar (Switch) yang dioperasikan secara listrik dan merupakan komponen Electromechanical (Elektromekanikal) yang terdiri dari 2 bagian utama yakni Elektromagnet (Coil) dan Mekanikal (seperangkat Kontak Saklar/Switch). Relay menggunakan Prinsip Elektromagnetik untuk menggerakkan Kontak Saklar sehingga dengan arus listrik yang kecil (low power) dapat menghantarkan listrik yang bertegangan lebih tinggi. Sebagai contoh, dengan Relay yang menggunakan Elektromagnet 5V dan 50 mA mampu menggerakan Armature Relay (yang berfungsi sebagai saklarnya) untuk menghantarkan listrik 220V 2A.



Ada besi atau yang disebut dengan nama inti besi dililit oleh sebuah kumparan yang berfungsi sebagai pengendali.  Sehingga kumparan kumparan yang diberikan arus listrik maka akan menghasilkan gaya elektromagnet.  Gaya tersebut selanjutnya akan menarik angker untuk pindah dari biasanya tutup ke buka normal.  Dengan demikian saklar menjadi pada posisi baru yang biasanya terbuka yang dapat menghantarkan arus listrik.  Ketika armature sudah tidak dialiri arus listrik lagi maka ia akan kembali pada posisi awal, yaitu normal close.

Fitur:

1. Tegangan pemicu (tegangan kumparan) 5V

2. Arus pemicu 70mA

3. Beban maksimum AC 10A @ 250 / 125V

4. Maksimum baban DC 10A @ 30 / 28V

5. Switching maksimum

g. Motor DC




Terdapat dua bagian utama pada sebuah Motor Listrik DC, yaitu Stator dan Rotor. Stator adalah bagian motor yang tidak berputar, bagian yang statis ini terdiri dari rangka dan kumparan medan. Sedangkan Rotor adalah bagian yang berputar, bagian Rotor ini terdiri dari kumparan Jangkar. Dua bagian utama ini dapat dibagi lagi menjadi beberapa komponen penting yaitu diantaranya adalah Yoke (kerangka magnet), Poles (kutub motor), Field winding (kumparan medan magnet), ArmatureWinding (Kumparan Jangkar), Commutator (Komutator)dan Brushes (kuas/sikat arang).

Pada prinsipnya motor listrik DC menggunakan fenomena elektromagnet untuk bergerak, ketika arus listrik diberikan ke kumparan, permukaan kumparan yang bersifat utara akan bergerak menghadap ke magnet yang berkutub selatan dan kumparan yang bersifat selatan akan bergerak menghadap ke utara magnet. Saat ini, karena kutub utara kumparan bertemu dengan kutub selatan magnet ataupun kutub selatan kumparan bertemu dengan kutub utara magnet maka akan terjadi saling tarik menarik yang menyebabkan pergerakan kumparan berhenti



Untuk menggerakannya lagi, tepat pada saat kutub kumparan berhadapan dengan kutub magnet, arah arus pada kumparan dibalik. Dengan demikian, kutub utara kumparan akan berubah menjadi kutub selatan dan kutub selatannya akan berubah menjadi kutub utara. Pada saat perubahan kutub tersebut terjadi, kutub selatan kumparan akan berhadap dengan kutub selatan magnet dan kutub utara kumparan akan berhadapan dengan kutub utara magnet. Karena kutubnya sama, maka akan terjadi tolak menolak sehingga kumparan bergerak memutar hingga utara kumparan berhadapan dengan selatan magnet dan selatan kumparan berhadapan dengan utara magnet. Pada saat ini, arus yang mengalir ke kumparan dibalik lagi dan kumparan akan berputar lagi karena adanya perubahan kutub. Siklus ini akan berulang-ulang hingga arus listrik pada kumparan diputuskan.



                    

h. Lampu

Light Emitting Diode atau sering disingkat dengan LED adalah komponen elektronika yang dapat memancarkan  cahaya monokromatik ketika diberikan tegangan maju. LED merupakan keluarga Dioda yang terbuat dari bahan semikonduktor.


i. Dioda

Dioda adalah komponen elektronika yang terdiri dari dua kutub dan berfungsi menyearahkan arus. Komponen ini terdiri dari penggabungan dua semikonduktor yang masing-masing diberi doping (penambahan material) yang berbeda, dan tambahan material konduktor untuk mengalirkan listrik.Dioda memiliki simbol sebagai berikut :
Gambar Simbol Dioda

Cara Kerja Dioda

Secara sederhana, cara kerja dioda dapat dijelaskan dalam tiga kondisi, yaitu kondisi tanpa tegangan (unbiased), diberikan tegangan positif (forward biased), dan tegangan negatif (reverse biased).

A. Kondisi tanpa tegangan

Pada kondisi tidak diberikan tegangan akan terbentuk suatu perbatasan medan listrik pada daerah P-N junction. Hal ini terjadi diawali dengan proses difusi, yaitu bergeraknya muatan elektro dari sisi n ke sisi p. Elektron-elektron tersebut akan menempati suatu tempat di sisi p yang disebut dengan holes. Pergerakan elektron-elektron tersebut akan meninggalkan ion positif di sisi n, dan holes yang terisi dengan elektron akan menimbulkan ion negatif di sisi p. Ion-ion tidak bergerak ini akan membentuk medan listrik statis yang menjadi penghalang pergerakan elektron pada dioda.

B. Kondisi tegangan positif (Forward-bias)

Pada kondisi ini, bagian anoda disambungkan dengan terminal positif sumber listrik dan bagian katoda disambungkan dengan terminal negatif. Adanya tegangan eksternal akan mengakibatkan ion-ion yang menjadi penghalang aliran listrik menjadi tertarik ke masing-masing kutub. Ion-ion negatif akan tertarik ke sisi anoda yang positif, dan ion-ion positif akan tertarik ke sisi katoda yang negatif. Hilangnya penghalang-penghalang tersebut akan memungkinkan pergerakan elektron di dalam dioda, sehingga arus listrik dapat mengalir seperti pada rangkaian tertutup.

C. Kondisi tegangan negatif (Reverse-bias)

Pada kondisi ini, bagian anoda disambungkan dengan terminal negatif sumber listrik dan bagian katoda disambungkan dengan terminal positif. Adanya tegangan eksternal akan mengakibatkan ion-ion yang menjadi penghalang aliran listrik menjadi tertarik ke masing-masing kutub. Pemberian tegangan negatif akan membuat ion-ion negatif tertarik ke sisi katoda (n-type) yang diberi tegangan positif, dan ion-ion positif tertarik ke sisi anoda (p-type) yang diberi tegangan negatif. Pergerakan ion-ion tersebut searah dengan medan listrik statis yang menghalangi pergerakan elektron, sehingga penghalang tersebut akan semakin tebal oleh ion-ion. Akibatnya, listrik tidak dapat mengalir melalui dioda dan rangkaian diibaratkan menjadi rangkaian terbuka.

D. Rumus

rumus


j. Voltmeter

Volt meter DC merupakan alat ukur yang berfungsi untuk mengetahui beda potensial tegangan DC antara 2 titik pada suatu beban listrik atau rangkaian elektronika.


k. Baterai
Baterai (Battery) adalah sebuah alat yang dapat merubah energi kimia yang disimpannya menjadi energi Listrik yang dapat digunakan oleh suatu perangkat Elektronik. Hampir semua perangkat elektronik yang portabel seperti Handphone, Laptop, Senter, ataupun Remote Control menggunakan Baterai sebagai sumber listriknya. Dengan adanya Baterai, kita tidak perlu menyambungkan kabel listrik untuk dapat mengaktifkan perangkat elektronik kita sehingga dapat dengan mudah dibawa kemana-mana. Dalam kehidupan kita sehari-hari, kita dapat menemui dua jenis Baterai yaitu Baterai yang hanya dapat dipakai sekali saja (Single Use) dan Baterai yang dapat di isi ulang (Rechargeable). Baterai simbol seperti gambar di bawah ini:

Gambar Simbol Baterai


l. LCD
 LCD (Liquid Crystal Display) adalah suatu jenis media tampil yang menggunakan kristal cair sebagai penampil utama. Adapun fitur yang disajikan dalam LCD ini adalah terdiri dari 16 karakter dan 2 baris, mempunyai 192 karakter tersimpan, terdapat karakter generator terprogram, dapat dialamati dengan mode 4 bit dan 8 bit, dilengkapi dengan back light.

        Proses inisialisasi pin arduino yang terhubung ke pin LCD RS, Enable, D4, D5, D6, dan D7, dilakukan dalam baris LiquidCrystal (2, 3, 4, 5, 6, 7), dimana LCD merupakan variabel yang dipanggil setiap kali intruksi terkait LCD akan digunakan. 

       Pada Proyek Akhir ini LCD dapat menampilkan karakternya dengan menggunakan library yang bernama LiquidCrystal. Berikut ada beberapa fungsifungsi dari library LCD: 
  1. begin() Untuk begin() digunakan dalam inisialisasi interface ke LCD dan mendefinisikan ukuran kolom dan baris LCD. Pemanggilan begin() harus dilakukan terlebih dahulu sebelum memanggil instruksi lain dalam library LCD. Untuk syntax penulisan instruksi begin() ialah sebagai berikut. lcd.begin(cols,rows) dengan lcd ialah nama variable, cols jumlah kolom LCD, dan rows jumlah baris LCD. 
  2. clear() Instruksi clear() digunakan untuk membersihkan pesan text. Sehingga tidak ada tulisan yang ditapilkan pada LCD.
  3. setCursor() 19 Instruksi ini digunakan untuk memposisikan cursor awal pesan text di LCD. Penulisan syntax setCursor() ialah sebagai berikut. lcd.setCursor(col,row) dengan lcd ialah nama variable, col kolom LCD, dan row baris LCD. 
  4. print() Sesuai dengan namanya, instruksi print() ini digunakan untuk mencetak, menampilkan pesan text di LCD. Penulisan syntax print() ialah sebagai berikut.lcd.print(data) dengan lcd ialah nama variable, data ialah pesan yang ingin ditampilkan.
m. Sensor LM35

Sensor suhu LM35 adalah komponen elektronika yang memiliki fungsi untuk mengubah besaran suhu menjadi besaran listrik dalam bentuk tegangan. Sensor Suhu LM35 yang dipakai dalam penelitian ini berupa komponen elektronika elektronika yang diproduksi oleh National Semiconductor. LM35 memiliki keakuratan tinggi dan kemudahan perancangan jika dibandingkan dengan sensor suhu yang lain, LM35 juga mempunyai keluaran impedansi yang rendah dan linieritas yang tinggi sehingga dapat dengan mudah dihubungkan dengan rangkaian kendali khusus serta tidak memerlukan penyetelan lanjutan.
    Meskipun tegangan sensor ini dapat mencapai 30 volt akan tetapi yang diberikan kesensor adalah sebesar 5 volt, sehingga dapat digunakan dengan catu daya tunggal dengan ketentuan bahwa LM35 hanya membutuhkan arus sebesar 60 µA hal ini berarti LM35 mempunyai kemampuan menghasilkan panas (self-heating) dari sensor yang dapat menyebabkan kesalahan pembacaan yang rendah yaitu kurang dari 0,5ºC pada suhu 25ºC 

Simbol LM35 di proteus :

Grafik LM35

n. Soil Moisture Sensor
Soil moisture sensor adalah sensor kelembaban yang dapat mendeteksi kelembaban dalam tanah. Sensor ini sangat sederhana, tetapi ideal untuk memantau taman kota, atau tingkat air pada tanaman pekarangan. Sensor ini terdiri dua probe untuk melewatkan arus melalui tanah, kemudian membaca resistansinya untuk mendapatkan nilai tingkat kelembaban. Semakin banyak air membuat tanah lebih mudah menghantarkan listrik (resistansi kecil), sedangkan tanah yang kering sangat sulit menghantarkan listrik (resistansi besar). Sensor ini sangat membantu untuk mengingatkan tingkat kelembaban pada tanaman atau memantau kelembaban tanah. Soil moisture sensor  memiliki spesifikasi tegangan input sebesar 3.3V atau 5V, tegangan output sebesar 0 – 4.2V, arus sebesar 35 mA, dan memiliki value range ADC sebesar 1024 bit mulai dari 0 – 1023 bit.

Grafik respon sensor:

o. Kapasitor

Kapasitor (Kondensator) yang dalam rangkaian elektronika dilambangkan dengan huruf "C" adalah suatu alat yang dapat menyimpan energi/muatan listrik di dalam medan listrik, dengan cara mengumpulkan ketidakseimbangan internal dari muatan listrik. Kapasitor ditemukan oleh Michael Faraday (1791-1867). Satuan kapasitor disebut Farad (F). Satu Farad = 9 x 1011 cm2 yang artinya luas permukaan kepingan tersebut. Struktur sebuah kapasitor terbuat dari 2 buah plat metal yang dipisahkan oleh suatu bahan dielektrik. Bahan-bahan dielektrik yang umum dikenal misalnya udara vakum, keramik, gelas dan lain-lain. Jika kedua ujung plat metal diberi tegangan listrik, maka muatan-muatan positif akan mengumpul pada salah satu kaki (elektroda) metalnya dan pada saat yang sama muatan-muatan negatif terkumpul pada ujung metal yang satu lagi. Muatan positif tidak dapat mengalir menuju ujung kutub negatif dan sebaliknya muatan negatif tidak bisa menuju ke ujung kutub positif, karena terpisah oleh bahan dielektrik yang non-konduktif. Muatan elektrik ini tersimpan selama tidak ada konduksi pada ujung-ujung kakinya. Di alam bebas, phenomena kapasitor ini terjadi pada saat terkumpulnya muatanmuatan positif dan negatif di awan. dielektrik

p. Induktor

Induktor atau dikenal juga dengan Coil adalah Komponen Elektronika Pasif yang terdiri dari susunan lilitan Kawat yang membentuk sebuah Kumparan. Pada dasarnya, Induktor dapat menimbulkan Medan Magnet jika dialiri oleh Arus Listrik. Medan Magnet yang ditimbulkan tersebut dapat menyimpan energi dalam waktu yang relatif singkat. Dasar dari sebuah Induktor adalah berdasarkan Hukum Induksi Faraday.

Kemampuan Induktor atau Coil dalam menyimpan Energi Magnet disebut dengan Induktansi yang satuan unitnya adalah Henry (H). Satuan Henry pada umumnya terlalu besar untuk Komponen Induktor yang terdapat di Rangkaian Elektronika. Oleh Karena itu, Satuan-satuan yang merupakan turunan dari Henry digunakan untuk menyatakan kemampuan induktansi sebuah Induktor atau Coil. Satuan-satuan turunan dari Henry tersebut diantaranya adalah milihenry (mH) dan microhenry (µH). Simbol yang digunakan untuk melambangkan Induktor dalam Rangkaian Elektronika adalah huruf “L”.

q. Potensiometer

Potensiometer adalah resistor yang resistansinya dapat diubah atau diatur sesuai kebutuhan rangkaian elektronik. Potensio adalah keluarga resistor dan termasuk dalam kelompok resistor variabel.

Potensiometer terdiri dari tiga terminal, terminal wiper yang berfungsi sebagai penghapus, dan dua terminal yang ada diujung.

Potensiometer juga dikenal sebagai pot. Umumnya, potensiometer terdiri dari elemen resistensi melingkar dan wiper pusat. Elemen resistansi potensiometer biasanya terbuat dari karbon, sermet, plastik, kawat resistansi, dan daun logam.



5. Percobaan [Kembali]
a. Prosedur[Kembali]
1. Siapkan komponen yang diperlukan
2. Susunlah rangkaian sesuai dngan panduan
3. Inputkan codingan pada software arduino IDE
4. Running rangkaian 
b. Handware dan Diagram Blok [Kembali]


 



c. Rangkaian Simulasi dan Prinsip Kerja[Kembali] 






Prinsip Kerja:
Ketika gas sensor mendeteksi adanya asap di ruangan, maka gas sensor akan berlogika 1, sehingga menyebabkan motor berputar sebagai tanda bahwa kipas sirkulasi udara hidup. Ketika Toych sensor ditekan dimana akan menyebabkan touch sensor berlogika 1, sehingga menyebabkan motor berputar sebagai tanda gorden terbuka. Ketika sensor pir mendeteksi adanya objek di dekat lemari, maka sensor pir berlogika 1 yang mrenyebabkan motor berputar sebagai tanda bahwa lemari terbuka dan LED kuning menyala sebagai indikator. Ketika SW SPDT terhubung ke power supply yang menyebabkan berlogika HIGH, maka menyebabkan lampu  menyala.



c. Flowchart dan Listing Program[Kembali]

  • Flowchart






    • Listing Program 

//Input

int sensT = 13;  // Pin input untuk sensor T

int sensP = 12;  // Pin input untuk sensor P

int sensG = 11;  // Pin input untuk sensor G

int sw = 10;     // Pin input untuk saklar

 

//Output

int IN1 = 3;     // Pin output untuk motor - IN1

int IN2 = 4;     // Pin output untuk motor - IN2

int EN1 = 5;     // Pin output untuk motor - EN1

 

int IN3 = 7;     // Pin output untuk motor - IN3

int IN4 = 8;     // Pin output untuk motor - IN4

int EN2 = 6;     // Pin output untuk motor - EN2

int go = 2;      // Pin output untuk menggerakkan sesuatu (mungkin sesuai dengan konteks)

int swo = 9;     // Pin output untuk saklar WO

 

void setup() {

  pinMode(sensT, INPUT);  // Mengatur pin sensT sebagai input

  pinMode(sensP, INPUT);  // Mengatur pin sensP sebagai input

  pinMode(sensG, INPUT);  // Mengatur pin sensG sebagai input

  pinMode(sw, INPUT);     // Mengatur pin sw sebagai input

 

  pinMode(IN1, OUTPUT);   // Mengatur pin IN1 sebagai output

  pinMode(IN2, OUTPUT);   // Mengatur pin IN2 sebagai output

  pinMode(EN1, OUTPUT);   // Mengatur pin EN1 sebagai output

 

  pinMode(EN2, OUTPUT);   // Mengatur pin EN2 sebagai output

  pinMode(IN3, OUTPUT);   // Mengatur pin IN3 sebagai output

  pinMode(IN4, OUTPUT);   // Mengatur pin IN4 sebagai output

  pinMode(go, OUTPUT);    // Mengatur pin go sebagai output

  pinMode(swo, OUTPUT);   // Mengatur pin swo sebagai output

 

  Serial.begin(9600);  // Memulai komunikasi serial dengan baudrate 9600

}

 

void loop() {

  int t = digitalRead(sensT);  // Membaca nilai digital dari sensor T

  int p = digitalRead(sensP);  // Membaca nilai digital dari sensor P

  int g = digitalRead(sensG);  // Membaca nilai digital dari sensor G

  int s = digitalRead(sw);     // Membaca nilai digital dari saklar

 

  if (t == HIGH) {

    digitalWrite(IN1, 200);   // Mengatur output motor - IN1 ke nilai 200

    digitalWrite(IN2, 0);     // Mengatur output motor - IN2 ke nilai 0

    digitalWrite(EN1, HIGH);  // Mengatur output motor - EN1 ke HIGH (aktif)

  } else {

    digitalWrite(IN1, 0);     // Mengatur output motor - IN1 ke nilai 0

    digitalWrite(IN2, 200);   // Mengatur output motor - IN2 ke nilai 200

    digitalWrite(EN1, LOW);   // Mengatur output motor - EN1 ke LOW (non-aktif)

  }

 

  if (p == HIGH) {

    digitalWrite(IN3, 200);   // Mengatur output motor - IN3 ke nilai 200

    digitalWrite(IN4, 0);     // Mengatur output motor - IN4 ke nilai 0

    digitalWrite(EN2, HIGH);  // Mengatur output motor - EN2 ke HIGH (aktif)

  } else {

    digitalWrite(IN3, 0);     // Mengatur output motor - IN3 ke nilai 0

    digitalWrite(IN4, 200);   // Mengatur output motor - IN4 ke nilai 200

    digitalWrite(EN2, LOW);   // Mengatur output motor - EN2 ke LOW (non-aktif)

  }

 

  if (g == HIGH) {

    digitalWrite(go, HIGH);   // Mengatur output go ke HIGH (aktif)

  } else {

    digitalWrite(go, LOW);    // Mengatur output go ke LOW (non-aktif)

  }

 

  if (s == HIGH) {

    digitalWrite(swo, HIGH);  // Mengatur output swo ke HIGH (aktif)

  } else {

    digitalWrite(swo, LOW);   // Mengatur output swo ke LOW (non-aktif)

  }

}

d. Video Simulasi[Kembali]

 




e. Download File[Kembali]






 

Entri yang Diunggulkan

TUGAS BESAR PRAKTIKUM UP & UC (MODUL 4)

  [KEMBALI KE MENU SEBELUMNYA] DAFTAR ISI 1. Pendahuluan 2. Tujuan 3. Alat dan Bahan 4. Dasar Teori 5. Percobaan Percob...